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SUMMARY
Ecological and aggregate data studies are examples of group-level studies. Even though the link

between the predictors and outcomes is not preserved in these studies, inference about individual-level
exposure effects is often a goal. The disconnection between the level of inference and the level of analysis
expands the array of potential biases that can invalidate the inference from group-level studies. While
several sources of bias, specifically due to measurement error and confounding, may be more complex in
group-level studies, two sources of bias, cross-level and model specification bias, are a direct consequence
of the disconnection. With the goal of aligning inference from individual versus group-level studies, I
discuss the interplay between exposure and study design. I specify the additional assumptions necessary
for valid inference, specifically that the between- and within-group exposure effects are equal. Then
cross-level inference is possible. However, all the information in the group-level analysis comes from
between-group comparisons. Models where the group-level analysis provides even a small percentage
of information about the within-group exposure effect are most susceptible to model specification bias.
Model specification bias can be even more serious when the group-level model isn’t derived from an
individual-level model.
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1. INTRODUCTION

Ecological studies are frequently maligned but often used in epidemiology because of their relatively
low cost and the availability of data (Morgenstern, 1982; Greenland, 1992). For example, in cancer
epidemiology, ecological studies of diet and cancer relate routinely collected food consumption data
to cancer incidence rates across geographic areas. The low cost and ability of these studies to capture
dietary contrasts that are more extreme than those present within areas make them appealing (Prentice
and Sheppard, 1990; Prenticeet al., 1988). However, their use is controversial (e.g. Willett and Stampfer
(1990)). In contrast, ecological studies are common in air pollution epidemiology. The most common
type of study, the time series study, is an ecological study. Time series studies relate daily population
health outcomes to daily air pollution exposure measurements (e.g. Sheppardet al. (1999)). Since they
are based on routinely collected data, they are inexpensive to conduct. Unlike other ecological studies, the
air pollution time series studies are not viewed as inherently flawed. They form an important part of the
evidence upon which air quality standards are based (e.g. EPA (1996)).

Since groups are the unit of analysis, ecological studies are group-level studies. There is no linkage in
the data between individual exposures and outcomes in these studies. Inference from ecological studies
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can be either at the level of the analysis, i.e. ecological inference, or at the individual level, called biologic
inference (Morgenstern, 1998). Often biologic inference is the goal of an ecological study even though the
data are at the group level. This is a form of cross-level inference. The disconnection between the level of
the analysis and the level of inference means additional sources of bias can enter beyond those ordinarily
of concern with any observational study.

This paper will focus on biologic inference, specifically with respect to the exposure effect estimate(s),
from group-level studies. Because of the potential biases, many scientists have counseled against the use
of ecologic studies for inference (e.g. Piantadosiet al. (1988)). However, given the compelling need to
make the best possible use of available data to benefit public health, there will continue to be interest
in inferring individual-level risks from group-level data. Practical limitations in exposure assessment in
individual-level studies also direct more attention to group-level studies. I suggest that a constructive
response to the natural desire to use group-level data for biologic inference in public health is to develop
methods that will draw valid inference while making the best use of available data. This, combined with
active recognition of the strengths and weaknesses in a specific application, will facilitate progress in
elucidating the health effects of environmental exposures.

Because of their history and data constraints, ecological models are often mis-specified. In many
settings model mis-specification alone is sufficient to ensure ecological study parameters cannot be used
for biologic inference. The first step in any group-level analysis is to align model specification with
individual-level studies. Beyond this, group-level studies require additional assumptions. Specifically,
because biologic inference is cross-level, one must consider the potential for cross-level bias.

The study of dietary fat and breast cancer is a good motiviating example. Early evidence of the
association between dietary fat and cancer came from international ecological studies (Armstrong and
Doll, 1975; Doll and Peto, 1981). Within-country prospective cohort studies are considered the most
inferentially sound of all observational studes (e.g. Willett (2001), Zock (2001)), but many have failed
to replicate this association for breast cancer (e.g. Homleset al. (1999)). However, measurement error
bias is a major challenge in all observational studies of diet. In fact, ecological studies showing an
association between fat intake and breast cancer incidence can be shown to be broadly consistent with
many analytic epidemiology studies when measurement error bias is incorporated (Prentice and Sheppard,
1990). Furthermore, because population rather than individual estimates of dietary intake are used,
international comparisons are not subject to the same exposure measurement error bias that plagues
traditional case-control and cohort studies within populations (Prentice and Sheppard, 1995; Sheppard
and Prentice, 1995). It is likely that the prevailing preference of analytic epidemiological studies over
ecological studies for the study of diet and cancer heavily discounts the importance of measurement error
as a dominant source of bias while simultaneously emphasizing other biases that occur in group-level
studies. Regardless, considerable skepticism remains regarding the interpretability of ecological studies
of fat and cancer, particularly in view of their reliance on readily available food consumption data and
their limited ability to control for confounding. Even less is understood about the role of types of effects,
proper model specification, and the exposure information available in the analysis. These are the main
topics of this paper. I begin by discussing a framework for classifying designs based on grouping in the
exposures and/or outcomes. This conceptually links individual and group-level designs.

2. GROUPING IN EXPOSURE VERSUS ANALYSIS

In multi-popoulation ecologic studies, events are tallied over a fixed case accession period. In the
cancer incidence application it is appropriate to assume these are rare events. This assumption also is
appropriate for many other epidemiologic investigations of health effects of environmental exposures.
Outcomes may range from total mortality, incidence of cancer or a chronic disease, to medical service use
such as emergency department visits or aid car responses for cardiovascualar emergencies.
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Forthe model at the individual level, assumeYki = 1 indicates a disease event of interest (0 otherwise)
for individual i = 1, . . . , nk within areaAk , k = 1, . . . , K during a fixed time period. Under a rare
disease assumption, a plausible relative risk model is

µki (I ) = E(E(Yki |vk, xki )) = E(exp(α + xT
kiβ + vk)) (2.1)

where the outer expectation is with respect tovk , an area-specific random variable with E(evk ) = 1 and
var(evk ) = σ 2

v , andxki is a P-vector of exposures and confounders. The regression parametersθ = (α, β)

are to be estimated where, specifically, components ofβ are exposures of scientific interest. I assume this
individual model is valid and investigate the implications of modifications to it due to study design and
data availability.

A useful conceptualization of grouping in epidemiology is to distinguish between grouping in
exposures (or more generally any covariates) and study design and/or analysis. Table 1 depicts the two
aspects of grouping. Each cell gives the corresponding type of study, the mean as defined in this section,
and the equation number where the mean is defined. Exposures are grouped whenever a group mean
exposure is substituted for an individual exposure. Departing from (2.1), the analysis would rely on
substituting the group mean,xkp = ∑nk

i=1 xkip/nk , for one or more of thep = 1, . . . , P covariates.
For all covariates grouped, the model is

µki (S) = E(exp(αs + xT
k βs + vk)). (2.2)

The subscripts indicates the parametersθs may no longer equalθ since the predictors have changed.
This approach is often taken in multi-city air pollution epidemiology cohort studies. In such cases the
air pollution exposure is a community-level average over time from one or more monitors while other
exposure and confounding variables are available for each individual (Dockeryet al., 1993; Popeet al.,
1996). Kunzli and Tager (1997) call this the semi-individual design.

The alternate approach to grouping is to group the analysis. Here the linkage between covariates and
outcomes is severed at the individual level and thus the analysis is conducted at the level of the group. The
most direct transition from an individual to grouped data study is the aggregate data study (Prentice and
Sheppard, 1995; Sheppard and Prentice, 1995). Building from (2.1), the aggregate model is

µk(A) = E(E(Ȳk |xki , vk)) = E(n−1
k

nk∑
i=1

exp(αa + xT
kiβa + vk)) (2.3)

whereȲk = ∑nk
i=1 Yki/nk . This is an example of a ‘complete data’ aggregate model where individual

covariates are assumed to be available for all members in each group. In order to be realistic in application,
an aggregate data study must rely on a covariate subsample from the population (Prentice and Sheppard,
1995). However, in order to address conceptual differences between ecological and aggregate studies, I
will restrict attention in this paper to the complete data aggregate model. The subscripta on the aggregate
model parameters allows for the possibility that they differ from the individual-level model parameters. A
goal of this paper is to clarify whenβ = βa .

The ecological model follows directly from the aggregate model by subsitituting group mean
exposures for individual exposures. Here the ecological model retains the same log–linear form specified
at the individual level:

µk(E) = exp(αe + x̄T
k βe). (2.4)

The ‘e’ subscript emphasizes the potential change in parameter interpretation forθe. Consistent with the
majority of the ecological study literature, there is no random effect (vk) in this model. Linkage of this
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Table 1. Interplay between exposure and
design/analysis

Design/Analysis Level
Exposure Individual Group
Individual Individual Aggregate Data

µki (I ), (2.1) µk(A), (2.3)
Group Semi-Individual Ecologic

µki (S), (2.2) µk(E), (2.4)

model with the disease mapping literature would include bothvk as well as the spatially dependent random
effectuk (Besaget al., 1991). This particular ecological model is mis-specified because it substitutes the
average covariate values into the relative risk function. (Note that there is no mis-specification for the
special case of a linear relative risk model with a single covariate.)

Often ecological models are specified without direct alignment with the presumed individual-level
relationship (e.g. Greenland and Robins (1994), Greenland (2001)). In an ecological study the norm
is to begin by specifying a group-level model with little or no regard for the individual relationships.
Published studies commonly specify linear models, regardless of the hypothesized effect of exposure
on the disease outcome at the individual level. One important reason why ecological studies often do
not estimate the parameters of interest stems from this fundamental discrepancy between their set-up and
intended interpretation. So even though it is possible to specify ecological models with the same functional
form as an individual-level study model, ecological studies in the published literature often suffer from
both types of model mis-specification: model form and grouped covariates. Guthrie and Sheppard (2001)
show through direct simulation of the examples given in Greenland and Robins (1994) that the aggregate
data study is free from many of the biases due to model mis-specification in ecological studies. In Section
3.5 I give further detail on model specification bias in ecological versus aggregate studies.

In this paper I am concerned with deeper understanding of inference in ecological studies relative
to that possible in individual-level studies. I am interested in biologic inference of exposure effect
parameters, i.e. those components ofβ associated with environmental exposures. I assume the exposures
to individuals will vary over individuals, both within and between groups. First I address a key assumption
that is necessary in order to make valid biologic inference from group-level studies: the assumption of no
contextual effects (Section 3.2). Then I address the information available to an individual-level versus
the equivalent group-level analysis (Section 3.3). This is most readily done by comparing individual to
aggregate studies. Not only does this clarify the sources of information for a group-level study, but it also
clarifies situations when there is greater potential for specification bias. This leads into a discussion of
specification bias due to substituting group mean exposures for the distribution of within-group exposure
as is done when one moves from aggregate to ecological studies (Section 3.5).

3. LINKING INDIVIDUAL -LEVEL WITH GROUP-LEVEL STUDIES

3.1 Preliminaries

The individual (2.1), aggregate (2.3), and ecological (2.4) unconditional means and variances are,
respectively,

µki (I ) = E(Yki ) = exp(α + xkiβ) Vk(I ) = �k + σ 2µk(I )µT
k (I )

µk(A) = E(Ȳk) = n−1
k

∑nk
i=1 exp(α + xkiβ) Vk(A) = σ 2(µk(A)2 − φk/nk) + (µk(A) − φk)/nk

µk(E) = exp(αe + x̄kβe) Vk(E) = µk(E)(1 − µk(E))/nk
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whereµk(I ) = (µk1(I ), . . . , µknk (I )), �k = diag(µki (I )[1− (1+σ 2)]µki (I )), andφk = ∑nk
i=1 µ2

ki (I ).
Consistent with the level of analysis, the aggregate and ecological models yield a single mean for each
group while the individual model produces a vector of means in each group. Likewise the variances for
the ecological and aggregate models are scalar while the individual model variance is a matrix.

3.2 Cross-level inference

There are many potential sources of bias in ecological studies. These are variously described in the
literature by terms such as ecological fallacy, aggregation bias, specification bias, and cross-level bias (e.g.
Morgenstern and Thomas (1993), Morgenstern (1982), Greenland and Morgenstern (1989), Langbein and
Lichtman (1978)). Inconsistent and incomplete definitions of these terms have contributed to the difficulty
of comprehending the pitfalls and benefits of group-level studies.

The original definition of cross-level bias appears to be due to Firebaugh (1978, p. 560) where he states
that ‘Cross-level bias is absent when, and only when,β2 = 0 in the structural equationY = a + β1X1 +
β2X̄1+e.’ I adopt a modified version of this definition below. Morgenstern (1982) introduced Firebaugh’s
definition into the public health literature. He went on to define cross-level bias as the sum of aggregation
and specification biases, terms that weren’t also written mathematically. In later contributions, Greenland
and Morgenstern (1989) used cross-level bias as a synonym for ecological bias while Richardsonet al.
(1987) used the term to describe uncontrolled between-group confounding.

The concept of cross-level bias is closely related to the distinction between between- and within-group
covariate effects as discussed in the longitudinal data literature (e.g. Neuhaus and Kalbfleisch (1998)).
Diggle et al. (1994, p.23ff) use slightly different terminology but address the same issue when they discuss
the difference in interpretation between cross-sectional (between-cluster) and longitudinal (within-cluster)
effects. Much earlier, Scott and Holt (1982) noted the importance of assuring that the two slopesβB and
βW are equal in the model

Yki = α + x̄kβB + (xki − x̄k)βW + εi j .

This is a prerequisite to their work addressing the efficiency of least-squares estimates in clustered data
settings. With the goal of removing uncontrolled confounding in longitudinal studies, Paltaet al. (1994)
stressed the importance of controlling for group effects, period effects, and other potential confounders
that vary differently between and within individuals in longitudinal studies. They suggest checking for
discrepancies and testing the coefficients ofx̄k in a regression model as a way of identifying possible
omitted variables. Likewise in the psychology literature, Schwartz and Stone (1998) advocate separating
pure within-cluster from between-cluster effects in the analysis of ‘ecological momentary assessment’
data, the term they use for repeated observational data.

With regard to the group-level analysis setting, suppose a general individual-level model is defined as

g(E(Yki |x̄k, xki )) = α + x̄kβB + (xki − x̄k)βW ,

wherex is a vector of exposure and confounder variables. I have explicitly separated the predictors into
components that vary within versus between groups. As in the longitudinal data setting, this notation
recognizes the potential difference in many studies of between-group and within-group covariate effects.
In epidemiology typically we are interested in the effect of an exposure on an individual’s risk of a
disease outcome. The parameter of interest for inference on individuals (biologic inference) isβW . As
I demonstrate in the next section, most of the information provided in a group-level analysis is forβB .
We incur cross-level bias in group-level studies whenever we assumeβW = βB when in factβW �= βB . I
suggest that when the goal is biologic inference, a group-level analysis is appropriateonly in applications
where one is comfortable hypothesizing thatβW = βB .
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Writing Firebaugh’s model using the above notation gives

g(E(Yki |xki , x̄k)) = α + xkiβ1 + x̄kβ2.

SinceβW = β1 andβB = β1 + β2, Firebaugh’s assumption thatβ2 = 0 is equivalent to assuming
βB = βW . The key criterion necessary to ensure no cross-level bias is that there is no additional
effect due to the overall exposure level on the group above its effect on an individual. Firebaugh called
these contextual effects (Firebaugh, 1978; Hammond, 1973; Greenland, 2001, 2002). The most natural
examples of contextual variables in epidemiology are socially defined exposures. For instance, it is
plausible to assume that the overall deprivation in an area would have an additional contextual effect
on health beyond the effect of an individual’s degree of deprivation. As another example, the media can
have an effect both on individuals and on the group by influencing the social norms in an area.

Note the distinction between parameters and estimates here. In many applications it may be reasonable
scientifically to assume that the underlying parameters are equal. Regardless, their estimates may differ.
The discrepancies could be caused by uncontrolled confounding or exposure measurement error. These
biases will operate differently onβW andβB and can be investigated directly in a multi-population cohort
study because it can estimate both parameters. For instance, it is well known that dietary data have a
significant amount of measurement error (Prentice, 1996) so that estimates ofβW are typically attenuated.
However, the error distribution may be reasonably assumed to be constant across cohorts. Then the dietary
measurement error wouldn’t bias an estimate ofβB . Thus, assumingβB = βW , measurement error bias
will still result in a difference between̂βB and ˆβW .

Biases can dominate one level over another due to differences in exposure, confounder, and
measurement error distributions across levels. In all studies, judgment about the equivalence of the
underlying within- and between-group parameters must be made on a scientific basis. Individual-level
studies offer the opportunity to test directly for differences in them, while group-level studies do not.
However, even for individual-level studies, in observational settings one cannot rule out the possibility that
observed differences in̂βB and ˆβW are due to bias in the estimates as opposed to underlying differences
in the parameters.

3.3 Information sources for health effect parameter estimation

This section shows how much information is available in individual-level and aggregate data studies to
estimateβW andβB . Note that the ecological model, e.g.µk(E) = exp(α+ x̄kβ), does not use any within-
group information from the covariate distribution. This contrasts with the aggregate study that uses some
within-group information by averaging over functions of all covariates. The important distinction between
ecological and aggregate studies is specification bias (see Section 3.5).

Sheppard and Prentice (1995) give the information for the parameterβ for individual-level and
aggregate models. It is calculated using the general formula for the information ofβ alone, I (β) =
Iββ(θ) − Iβα(θ)I −1

αα(θ)Iβ(θ) for

I (θ) =
[

Iαα(θ) Iαβ (θ)

Iβα(θ) Iββ(θ)

]
. (3.1)

The resulting information is written quite generally in terms of sums of squared differences in exposures
and weighted average exposures. I extend this to understand sources of information by explicitly
separating the within- and between-group covariates and effects. The individual (2.1) and aggregate (2.3)
models become

µki (I ) = exp(α + x̄kβB + (xki − x̄k)βW ) (3.2)
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and

µk(A) = n−1
k

nk∑
i=1

exp(α + x̄kβB + (xki − x̄k)βW ). (3.3)

This allows the two vectors of parameters,βW andβB , to be distinct. Suppose there is only a single
exposure sox = (xki − x̄k, x̄k) andβ = (βW , βB). Then the information equations for the individual and
aggregate models are, respectively,

II (β) =
K∑

k=1

nk∑
i=1

dki

[
(xki − x̄k(d))2 0

0 0

]
+

K∑
k=1

ck.

[
gk(c)2 (x̄k − x̄(c))gk(c)

gk(c)(x̄k − x̄(c)) (x̄k − x̄(c))2

]
,

IA(β) =
K∑

k=1

ek.

[
gk(e)2 (x̄k − x̄(e))gk(e)

gk(e)(x̄k − x̄(e)) (x̄k − x̄(e))2

]
,

(3.4)

wheregk(c) = (x̄k(c) − x(c)) − (x̄k − x̄(c)), x̄(c) = ∑
k ck. x̄k/

∑
k ck., and the notation is identical for

gk(e). Furthermore, for the individual modelx̄k(d) = ∑
i dki xki/

∑
i dki = ∑

i cki xki/
∑

i cki = x̄k(c),
andx(c) = ∑

k ck.x̄k(c)/
∑

k ck. wheredki = µki (I )[1 − (1 + σ 2)µki (I )]−1, · denotes summation, and
cki = dki (1+σ 2dk.)

−1. At the aggregate level,eki = µki (I )µk(A)/Vk(A)nk , x̄k(e) = ∑
i eki xki/

∑
i eki ,

andx(e) = ∑
k ek.x̄k(e)/

∑
k ek..

Note that the individual-level model information,II (β), has two components, one that sums over
individuals and groups (the ‘within groups component’) and one that sums only over groups (the ‘between
groups component’). In contrast, the aggregate model information,IA(β), has only the between groups
component. Within each component the information is given for(βW , βB). For the individual-level model
βW uses information from both components, whileβB uses information only from the between-group
component. All information aboutβB comes from summing over groups. Likewise, even though the
aggregate model lacks the within-group component, it still contributes some information aboutβW from
the between-group component. The information aboutβW from combining groups is obtained fromgk(c)2

or gk(e)2, squared differences in weighted mean differences from weighted grand means. One can expect
these differences will typically be small, particularly for covariates with symmetric distributions within
groups. These terms will be exactly 0 wheneverβ = 0 (sincegk(·) = 0). Finally, it can be shown that the
between-group components are equal in both models whenµki (I ) is very small.

This exercise gives the information in an aggregate versus individual model when the parametersβW

and βB remain distinct, regardless of whether or not they are equal. It points up two different issues
regarding the goal of biologic inference. First, the information in the data about the exposure effect
parametersβW andβB can be partitioned into between-group and within-group components. The within-
group component does not provide any information for estimation of the between-group exposure effect
parameter,βB . In contrast, the between-group component provides information about bothβB andβW .
However, we expect the information aboutβW in the between-group component will typically be small.
Second, the parameter of interest for biologic inference is alwaysβW . As we expect that there is very little
information about this parameter in an aggregate study, biologic inference from an aggregate (or more
generally any group-level) study will be valid only whenβW = βB . Biologic inference from an aggregate
study is cross-level because even when we parametrize the model soβ = βW = βB , the information in
the data allow us predominantly to estimateβB while the scientifically justified parameter for biologic
inference isβW .



272 L. SHEPPARD

Table 2.Sources of information in individual-level and aggregate models with between
and within-group exposure effect parameters

Fraction of Total Individual Information
σ2

B
σ2

T
Within Area Component Between Area Component

II (βW ) IA(βW ) II (βB) IA(βB) II (βW ) IA(βW ) II (βB) IA(βB)

X ∼ lognormal
0.22 0.94 – 0 – 0.03 0.03 0.03 0.03
0.35 0.87 – 0 – 0.02 0.02 0.12 0.12
0.55 0.69 – 0 – 0.006 0.007 0.31 0.32
0.73 0.47 – 0 – 0.002 0.002 0.52 0.53
0.92 0.16 – 0 – 10−4 10−4 0.84 0.84

X ∼ N (µk , σ2
k /c2

W )

0.22 0.87 – 0 – 0.03 0.03 0.09 0.10
0.35 0.78 – 0 – 0.01 0.02 0.21 0.22
0.55 0.62 – 0 – 0.005 0.006 0.37 0.38
0.73 0.44 – 0 – 0.002 0.002 0.55 0.56
0.92 0.16 – 0 – 10−4 10−4 0.84 0.84

X ∼ N (µk , σ2/c2
W )

0.22 0.94 – 0 – 10−4 10−4 0.06 0.07
0.35 0.77 – 0 – 10−5 10−5 0.23 0.24
0.55 0.45 – 0 – 10−6 10−6 0.55 0.56
0.73 0.17 – 0 – 10−7 10−7 0.83 0.84
0.92 0.01 – 0 – 10−9 10−9 0.99 0.99

3.4 Simulation studies of information sources

I extend simulations in Sheppard and Prentice (1995) to examine the association between dietary fat
and cancer. Briefly, assume the model (3.2) with a single exposure andα = −6.079, β = βW =
βB = 0.002937. The distribution ofx is fixed acrossK = 21 groups with group-specific meansxk and
σ 2

B = var(xk). The within-group covariate distribution varies both in terms of the scaling of the variance
(σ 2

W k = (σk/cW )2, cW = {1/2,1,2,4,16}) and whetherσ 2
W k varies with the group mean or is constant

across groups (lognormal, normal varying mean, normal constant mean). The overall exposure variance

is summarized asσ 2
T = σ 2

B + σ 2
W /cW . The random group effect (evk ) is a gamma-distributed random

variable with mean 1 and variance 0.0476. Ten thousand exposures and binary outcomes are simulated
with events determined by the individual-level model mean (2.1) for an average of 19 (range 5–50) events
per group. There are 500 replicates.

Table 2 gives the sources of information (relative to the total information from an individual-level
analysis) for both the individual-level and aggregate analyses. The total information is the average total
information summed over both parameters in the individual-level model (i.e. all diagonal cells inII (β)

of (3.4)). The dashes in the table indicate quantities that don’t exist (see (3.4)). AssumingβW = βB

demonstrates the biologic inference setting.
The relative amount of information in the between versus within area components shifts as a function

of the relative variation in the exposure distribution (seeσ 2
B/σ 2

T ). As expected, in the individual-level
study, the within-area component of information contributes most to the total information when the
exposure varies more within areas. The individual and aggregate information estimates are nearly identical
in the between-group component of information for bothβW andβB . For all distributions, the information
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for βW in the between groups component is small, regardless of the analysis approach. It is negligible
for the normally distributed predictor with constant variance. It is larger when the mean and variance
of x are correlated within areas and largest when that distribution is also skewed. In the most extreme
case of a lognormal exposure with most of the exposure variation within groups (first row of the table),
the information in the between-group component is equal forβW andβB . This is the situation where
reliance on a group-level analysis for estimation ofβ is least desirable. There is very little information
in the between-group component and half the total information in the group-level analysis comes from
high-order differences of group means. This piece will be extremely difficult to estimate in practice and
impossible when only summary statistics such as area means are available, as is common in ecological
studies.

3.5 Model specification bias in ecological studies relative to aggregate data studies

The ecological model (2.4) is mis-specified whenever the disease model is not linear andx̄k �= xki∀i, k.
The specification bias for̂β in the ecological model can be quantified with estimating equations. The score
equation for the ecological model will be biased because a mis-specified model is being fit. I correct the
ecological estimating equation to make it unbiased and from this derive the bias toβ, the health effect
parameter of interest.

The mean model parameters to be estimated areθ = (α, β). Using the notation from Section 3.1,
write the score for the ecological model as

U (E, θ) =
K∑

k=1

DT
k (E)V −1

k (E)(ȳk − µk(E))

whereDk(E) = ∂µk(E)/∂θ. Because E(̄yk) �= µk(E), E(U (E, θ)) = −b(θ). The unbiased estimating
equation is

U∗(θ) =
K∑

k=1

DT
k (E)V −1

k (E)(ȳk − µk(E) + µk(E) − µk(A)) = U (E, θ) + b(θ),

where

b(θ) =
K∑

k=1

DT
k (E)V −1

k (E)µk(E)

[
1 − 1

nk

nk∑
i=1

exp{(xki − x̄k)β}
]

. (3.5)

Assumeθ̂b is the solution toU (E, θ) = 0. From a first-order Taylor series expansion ofU (E, θ̂b) about
θ̂b = θ, the estimate ofθ from using the mis-specified model will be biased fromθ by −I (E, θ)−1b(θ)

whereI (E, θ) = −E(U ′(E, θ)). The bias is present even though the model has the correct link function.
(Additional bias may result from the common practice of using a different functional form for the
ecological model.) The term within square brackets in (3.5) determines the degree of bias. Clearly when
xki = xk∀k, i there is no bias. Furthermore, whenn−1

k

∑nk
i=1 exp{(xki − x̄k)β} is constant across groups,

the bias is absorbed into the intercept parameterα and doesn’t affectβ. If this term is correlated with̄xk ,
the estimate ofβ will be biased. (For instance, assumen−1

k

∑nk
i=1 exp{(xki − x̄k)β} = exp(ρx̄kβ) and note

thatU∗(θ) has parametersθ = (α, (ρ + 1)β)).
Correction for some or all of this bias can be accomplished by incorporating additional predictors in

the ecological regression that summarize the joint distribution ofx. For instance, whenx has a normal
distribution, inclusion of the (known) variance ofx alone will remove all bias:

µ∗
k(E) = µk(E) exp(βT vark(x)β/2) (3.6)
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Table 3. Exposure effect estimates (×10−3) under various group-level models and exposure
distributions

Exposure Ecological Ecological Var. Adj. Aggregate
W/in-Group W/in-Group Model % Bias Ecological

Distribution Variance
σ2

B
σ2

T
Est. Actual β̂ SE(β̂) β̂ SE(β̂) β̂ SE(β̂)

Lognormal 0.35 19 17 3.433 0.540 3.028 0.424 2.933 0.384
0.73 3 3 3.040 0.594 2.951 0.561 2.947 0.558

Normal varies 0.35 14 13 3.312 0.547 2.930 0.434 2.930 0.434
0.73 3 3 3.030 0.590 2.943 0.557 2.943 0.557

Normal constant 0.35 0 0 2.953 0.582 2.952 0.582 2.953 0.582
0.73 0 0 2.943 0.606 2.943 0.606 2.943 0.606

(Richardsonet al., 1987; Plummer and Clayton, 1996). Inspection ofµ∗
k(E) indicates that the bias using

µk(E) will be larger the more vark(x) increases withx, for largerβ, or with increased convexity of the
link function (exp(·)here) (Wakefield and Salway, 2001).

3.6 Specification bias studies

I illustrate the impact of specification bias by simulation using the same example. To facilitate comparison
with ecological studies as they would tend to be analyzed, I do not include any group-specific frailties.
Otherwise, binary outcomes are simulated based on (2.1).

Table 3 gives results for six scenarios using the three covariate distributions and two ratios of exposure
variation,σ 2

B/σ 2
T . (These ratios bracket estimates previously reported for international diet and cancer

studies (Prentice and Sheppard, 1995).) I report onlyβ since this is the parameter of interest for biologic
inference. Estimates are given for the percent bias in an ecological model, followed by the parameter
estimates and standard errors in the ecological model, the variance-adjusted ecological model (replace
µk(E) from (2.4) withµ∗

k(E) in (3.6)), and the aggregate model.
As discussed in the previous section, the ecological estimate ofβ is unbiased under a normally

distributed covariate with constant variance across groups since the bias is absorbed into the intercept (see
also (Plummer and Clayton, 1996)). Related to this point, the between-group component of information
has no information onβW (Table 2). For the other two exposure distributions, the ecological regression is
positively biased because the group means are positively correlated with the within-group variances and
the between-group component of information contributes information onβW (Table 2). In all cases the
estimated bias is close to the actual bias. Their difference is due to the inaccuracy in the single-step Taylor
series expansion. There is more bias in the lognormal distribution because the higher-order moments are
also correlated with the mean. The bias is larger when there is a larger proportion of within-group variation

in the exposure (compare
σ2

B

σ2
T

= 0.35 versus 0.73). The variance adjustment is sufficient to remove the

model specification bias for the normally distributed predictor because (3.6) completely characterizes the
bias and I estimate the within-area variance from the entire population of 10 000 exposures. Wakefield and
Salway (2001) show poorer performance of the variance-adjusted ecological model when the variances
are estimated from small samples.



Bias and information in group-level studies 275

4. DISCUSSION

This paper highlights three major points that should be considered for any group-level study. First,
a group-level analysis does not use all the information in the data. Depending upon the relative amount
of variation in the exposure between versus within groups, there can be considerable information lost
by aggregating over individuals. Second, inference about the exposure effects from a group-level study
relies on the between-group parameter,βB , which could have a different scientific interpretation from
the within-group parameter,βW . Inference from group-level studies is cross-level in the sense that they
give information almost exclusively aboutβB , but for biologic inference the parameter of interest isβW .
Finally, since almost completely separate components of variation in the covariate are used to estimate
βW versusβB , each could be subject to different biases. In a study of individuals with exposures that
vary both within and between groups, this could be used to advantage when trying to identify and control
sources of bias.

While I’ve focused primarily on bias and information related to exposure variables, the ability to
partition information applies to all covariates and can be used to inform questions about the impact of
potential confounders and mis-measured covariates in both group-level and clustered data studies. For
instance, in environmental epidemiology studies it may be reasonable to assume cross-level inference
will be valid for the environmental exposure of interest, while it will be more plausible to assume
non-environmental covariates will have different within- and between-cluster effects on the outcome.
In particular, behaviorally derived covariates will often have different meaning and thus different health
effects between versus within clusters.

In any specific application it is crucial to gain in-depth understanding of the exposure of interest
and its distributional properties. As an example, Sheppard and Prentice (1995) examine the impact
of exposure measurement error and uncontrolled confounding in dietary studies analyzed at the group
versus individual level. Disconnection between available and ideal exposure data can lead to substantial
bias in exposure effect parameters, regardless of the design. In semi-individual and ecological studies,
specification bias is likely. Often incorporation of information about within-group covariate distributions
will be necessary, although in some applications bias from omitting this information may be small.
Individual studies should always suspect classical measurement error. Residual confounding cannot ever
be ruled out in an observational study and thus must be considered in all designs.

While the issues of cross-level bias and variation are critical to the validity of group-level studies, they
are not unique to them. They are present inall multilevel studies. Although not the focus of this work, I
note that cross-level bias can be hidden in covariate effect estimates from longitudinal studies whenever
proper precautions are not taken in the analysis. Furthermore, even when the between- and within-cluster
effects are equal, the problems inherent in correctly incorporating multilevel information in an analysis
are present whenever covariates vary both within and between clusters. Biases due to measurement error
or confounding can dominate just one of the effect estimates, either the between- or the within-group
effect, because of its impact on the exposure at just one of the two levels of information. For instance,
measurement error may bias the within-group effect estimate while leaving the between-group effect
estimate unchanged. Likewise, a confounding variable may be associated with an exposure variable at
only one level, either within or between groups, thus leaving the exposure effect estimate at the other
level of analysis unbiased. As an example, typical air pollution panel studies collect repeat pollutant and
outcome measures over time in a sample of individuals. Analyses that separate the within- and between-
subject effects can obtain very different estimates for these effects. Yuet al. (2000) were faced with this
difficulty in an analysis of the role of pollutants, specifically carbon monoxide and particulate matter,
on symptoms of asthma in the greater Seattle area. Children in this study were observed for about two
months each over a two-year period. The exposure measurements were derived from ambient monitors,
so all the differences in subject-specific exposure means were due to the subject-specific time periods of
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observation. However, season is a strong determinant of both air pollution and asthma symptoms. Since
residual seasonal confounding in the between-subject exposure effects was likely, this paper only reported
the within-subject exposure effects.
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